Efficient karaoke song recommendation via multiple kernel learning approximation
نویسندگان
چکیده
Online karaoke allows users to practice singing and distribute recordings. Different from traditional music recommendation, online karaoke need to consider users’ vocal competence besides their tastes. In this paper, we develop a karaoke recommender system by taking into account vocal competence. Alone this line, we propose a joint modeling method named MKLA by adopting bregman divergence as the regularizer in the formulation of multiple kernel learning. Specially, we first extract users’ vocal ratings from their singing recordings. Due to an ever-increasing number of recordings, the evaluations in large-scale kernel matrix may cost lots of time and internal storage. Therefore, we propose a sample compression method to eliminate users’ vocal ratings, exploit an MKL method, and learn the latent features of the vocal ratings. These latent features are simultaneously fed into a bregman divergence and then we use the trained classifier to predict the overall rating of a user with respect to a song. Enhanced by this new formulation, we develop the SMO method for optimizing the MKLA dual and present a theoretical analysis to show the lower bound of our method. With the estimated model, we compute the matching degree of users and songs in terms of pitch, volume and rhythm and recommend songs to users. Finally, we conduct extensive experiments with online karaoke data. The results demonstrate the effectiveness of our method. Corresponding authors email: [email protected], [email protected] Preprint submitted to Elsevier March 3, 2017
منابع مشابه
Learning the kernel matrix via predictive low-rank approximations
Efficient and accurate low-rank approximations to multiple data sources are essential in the era of big data. The scaling of kernel-based learning algorithms to large datasets is limited by the O(n) complexity associated with computation and storage of the kernel matrix, which is assumed to be available in most recent multiple kernel learning algorithms. We propose a method to learn simultaneou...
متن کاملA Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classif...
متن کاملLearning Gaussian Process Kernels via Hierarchical Bayes
We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are learned from data using a simple and efficient EM algorithm. This step is nonparametric, in that it does not require a parametric form of covariance function. In a second step, kernel functions are fitted to approximate...
متن کاملAn Extended Level Method for Efficient Multiple Kernel Learning
We consider the problem of multiple kernel learning (MKL), which can be formulated as a convex-concave problem. In the past, two efficient methods, i.e., Semi-Infinite Linear Programming (SILP) and Subgradient Descent (SD), have been proposed for large-scale multiple kernel learning. Despite their success, both methods have their own shortcomings: (a) the SD method utilizes the gradient of only...
متن کاملMulti-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition
Recent studies have shown that multiple kernel learning is very effective for object recognition, leading to the popularity of kernel learning in computer vision problems. In this work, we develop an efficient algorithm for multi-label multiple kernel learning (ML-MKL). We assume that all the classes under consideration share the same combination of kernel functions, and the objective is to fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 254 شماره
صفحات -
تاریخ انتشار 2017